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L-Rigidity 

A new definition of rigidity, L-rigidity, in general relativity is proposed. This 
concept is a special class of pseudorigid motions and therefore it depends on the 
chosen curve L. It is shown that, for slow-rotation steady motions in Minkowski 
space, weak rigidity and L-rigidity are equivalent. The methods of the PPN 
approximation are considered. In this formalism, the equations that characterize 
L-rigidity are expressed. As a consequence, the baryon mass density is constant 
in first order, the stress tensor is constant in the comoving system, the Newtonian 
potential is constant along the line L, and the gravitational field is constant along 
the line L in the comoving system. 

1. INTRODUCTION 

Relativistic rigidity has been the subject of much work practically since 
the beginning of relativity, starting with Born (1909), Herglotz (1910), and 
Noether (1910). We will concentrate here on work appearing in the second 
half of this century, among others, Ehlers and Kundt (1962), Trautmann 
(1965), Synge (1966, 1972), Dixon (1970, 1979), Ehlers and Rudolph (1977), 
K0hler and Schattner (1979), Martfnez Salas and Gambi (1981), and Del 
Olmo and Olivert (1983, 1985, 1986, 1987). 

Dixon proposed a dynamical criterion for rigidity, in contrast to the 
Born condition: A body (or the motion of a body) is dynamically rigid if the 
reduced multipole moments of the momentum-energy tensor have constant 
components with respect to a comoving orthonormal frame. Dynamical rigid- 
ity ensures that the total internal energy is a constant of the motion. This 
concept is identical to the quasirigidity of Ehlers and Rudolph. In order to 
point out sufficient conditions under which quasirigidity may be used as an 
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approximation, Ehlers and Rudolph defined kinematically a class of pseu- 
dorigid motions and compared them with Born rigid motions. KOhler and 
Schattner analyzed the concept of pseudorigidity to determine whether a 
given motion is pseudorigid. They showed that under a certain assumption 
pseudorigidity implies Born rigidity at the center of the motion. 

Starting with a simple characterization of pairs of rigidly joined world 
lines, Martfnez Salas and Gambi made successive generalizations in defini- 
tions. They connected with the work of Synge, and Ehlers and Kundt, but 
they did not indicate the connection with the conditions of dynamical rigidity. 

Del Olmo and Olivert proposed both dynamical and kinematical criteria 
for rigidity: An almost-thermodynamic material scheme is weakly rigid if 
the expansion velocity scalar vanishes and the energy-momentum tensor has 
constant components in a comoving nonrotating tetrad. Weak rigidity leads 
to the incompressibility condition given by Ferrando and Olivert (1981). 
Using the methods of the PNN formalism, they obtained under weak rigidity 
conditions, an increase of two orders of magnitude in the strain rate tensor. 

The initial purpose of this work was to relate weak rigidity with quasiri- 
gidity. The attempt failed because it did not yield a direct relation between 
weak rigidity and quasirigidity. So we introduce a new concept of rigidity, 
which we call L-rigidity, that in particular cases leads to weak rigidity and 
quasirigidity. L-Rigidity is a special class of pseudorigid motions and therefore 
it depends on the chosen curve L. In L-rigid motion, the expansion of the vector 
field that describes the pseudorigid motion vanishes. Another kinematical 
condition requires that the Lie derivative of the normal l-form to the pseu- 
dorigid "body" world-tube, with respect to the vector field that describes the 
pseudorigid motion, vanishes. The third condition is a dynamical one: The 
family of tensor fields along L obtained by parallely transporting the energy- 
momentum tensor from the world lines that constitute the pseudorigid motion 
to the "center of motion" L has constant components with respect to a 
comoving orthonormal frame. 

The study of L-rigidity must begin by showing whether the proposed 
idealization is approximately satisfied by a wide range of real physical sys- 
tems. Thus, we study the L-rigidity conditions by applying some techniques 
of the PPN formalism in general relativity. 

In Section 3 we propose (Definition 2) the definition of L-rigidity. We 
consider a type of pseudorigid motion given by Proposition 1 ; moreover, this 
proposition delimits the size of the pseudorigid body locally. Later we express 
the L-rigidity conditions in a bitensorial form (Synge, 1966; DeWitt and 
Brehme, 1960). In the same section we use equation (8) together with the 
definition of the center-of-mass line defined by Ehlers and Rudolph (1977) 
to obtain, in the Minkowski space-time, that L-rigidity and weak rigidity are 
equivalent when the angular velocity is both small and constant. 
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In Section 4 we give the PPN expressions for the L-rigidity equations 
by using the covariant expansion of bitensors developed by DeWitt and 
Brehme (1960). The software package Mathematica (Wolfram, 1990) is used 
to facilitate computation of the PPN L-rigidity equations. The obtained results 
agree with classical rigidity, in the sense that the baryon mass density is 
constant in first order [equation (24)] and the stress tensor is constant in the 
comoving system [equation (25)]. Equations (28) and (29) are also in agree- 
ment with classical rigidity because the Newtonian potential is constant along 
the line L and the gravitational field is constant along the line L in the 
comoving system. 

2. NOTATION 

We will consider space-time as a set of three components (At, g, V), where 
At stands for a connected four-dimensional pseudo-Riemannian manifold of 
Hausdorff type (Sachs and Wu, 1977), g will be a hyperbolic metric tensor 
field [of signature (3, 1)], and V is the unique linear connection that At 
possesses, compatible with g and without torsion. 

Absolute differentiation along a curve L, parametrized as z(s), of a vector 
field X along L is denoted by 

X(s) = V~(~X 

where ~(s) is the tangent vector to L at the point z(s). 
Symmetrization of indices is denoted by (.). 
In each case, Greek labels indicate values of indices from 1 to 4, while 

Latin labels are used for indices from 1 to 3. 
We will use the theory of bitensors developed by Synge (1966) and by 

DeWitt and Brehme (1960). So, given a bitensor lX"(z, m), we consider that 
indices represented by Greek letters K, h . . . .  (Latin letters i, j . . . .  ) are 
associated to the point z, while a, 13 . . . .  (a, b . . . .  ) are associated to the 
point m. We denote by or(z, m) the world function and by 

H'~x = ( - t r .~ )  -t, K'~x = H'~ tr.~ 

the bitensors introduced by Dixon (1970). In this notation, a dot followed 
by an index denotes covariant differentiation related to one or another variable. 

Another important bitensor that we will use is the parallel propagator, 
denoted by ~x,~(z, m). 

The position vector of m relative to z is denoted by 

ra(z, m) = ~ ' ( m )  - xX(z) 

On the other hand, from a set of three components (L, n, 12), where L 
is a timelike curve, n is a timelike unit vector field along L, and 12 is a skew 
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tensor field along L orthogonal to n, we can define a transport, rotating M- 
transport, which may be used to define a derivative operator along L, 

RM 

D , X  x = X~ + Mx~X ~ 

where 

M X  = tiXn~ - nXti~ + l)x~ 

This derivative operator is obtained by mixing a transport of Jaumann type 
(Jaumann, 1911), if Il~,r was the rotation tensor of a timelike congruence, 
and Dixon's M-transport (Dixon, 1970). 

The comoving orthonormal frame used to define the quasirigidity condi- 
tion satisfies the former transport law (rotating M-transport). 

We denote by %: Tz(o)At ---> ~.~)At the induced isomorphism by the 
rotating M-transport. 

3. L-RIGIDITY 

In the definition of pseudorigid motion, the only limitation that exists 
concerns the size of the body. 

Our interest, first, is centered on delimiting the size of the pseudorigid 
body explicitly and locally, so that its points are simultaneous in Landau's 
sense (Olivert, 1980). 

Second, we propose a special class of pseudorigid motions, L-rigid 
motions, and analyze its immediate consequences. 

The following result will be used throughout this paper. 

Proposition 1. There exists an open interval I of 0 E R such that for 
all s ~ I there exist convex open sets Nz(,) of 0z(s~ ~ T~ts)At and connected 
open sets ~(~ of z(s) in At so that 

*,(Nz(o~) = Nz(,) 

and so that expz(s): Nz(s) ~ Uz(~) is a diffeomorphism. 

Proof Given the point z(0), there exists (Kobayashi and Nomizu, 1963) 
an open neighborhood V of 0z(0) E TAt and an open neighborhood W of z(0) 

At such that 

~: V---> W X  W 

X ---> (~r(X), exp,~(x0X) 

is a diffeomorphism, where -tr: TAt ---> At is the projection of the tangent 
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fiber bundle. So, for m e W we have that expm: V,, ---) W, where V,, = V O 
T,,~t, is a diffeomorphism. Let J = L-~(W); we consider the differentiable map 

"r: J X Tz(0)3/I, --~ Tail 

(s,X) ---> "rsX 

Therefore, there exists an open neighborhood I of 0 e R and a convex open 
neighborhood Nz(o) C_ V~(0) so that 

Oz(s) �9 "rs(Nz{o)) C Vzcs), Vs e I 

Let Nz(., ) = "rs(N:~0)) and let U:(.,) = expzu)(Nz(s)). �9 

Because of this proposition, and from the submersion 

d?~: Uz(s) --~ R 

m ---> d~(m) = (exp~)m)KnK(s) 

we trivially obtain that E(s) = +.Zt(0) is a spacelike regular submanifold of 
dimension 3, called a Landau manifold by Olivert (1980), the points of which 
are simultaneous in Landau's sense (simultaneity hypersurface). Moreover, as 

~(s) = expz(.,)(N,(~ ) n E(s)) 

where ~(s) is the orthogonal hyperplane to the vector n(s) at the point z(s), 
we have that X(s) is a connected hypersurface. 

We denote by X = O.,E(s) the world tube containing L and by • the 
differentiable function on X given by (Dixon, 1974) 

x(m)  = s if m e X(s) 

In order to simplify the notation, we consider 

s,. = x(m),  z,. = z(• 

Likewise, we denote by N '~ the unit normal vector field to ~. 
We consider the following congruence of timelike curves: 

~/,,,(s) = expz(~,.+~)'r.~m+.~%,-, t exp~2(m) (1) 

where m �9 E, and s belongs to an open neighborhood of the point --Sm given 
by Proposition 1. The vector field whose integral curves are given by equation 
(1) has the following components: 

oJa(m) = K~(z , . ,  m)g~(s,,) + H~(Zm, m)MKx(s,,)(r.X(Z,,, m) (2) 

whose expression formally coincides with that given by K6hler and Schattner 
to describe pseudorigid motion. This vector field satisfies 

~o~• = 1 (3) 
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Obviously Proposition 1 limits the size of the pseudorigid body to the 
world tube E. The same proposition allows us to affirm that the vector 
field flow that describes pseudorigid motion is a diffeomorphism that maps 
simultaneity hypersurfaces into simultaneity hypersurfaces, if we consider 
them sufficiently close, and it preserves the orientation. 

From this class of pseudorigid motions, we are going to propose a 
concept of rigidity that includes a slight modification of the weak rigidity 
conditions, so that in some particular cases it coincides with the one introduced 
by Del Olmo and Olivert (1985). 

Def in i t ion  2. A pseudorigid motion is L-rigid if the following conditions 
are satisfied: 

(i) V ' t o  = 0 
~M 

(ii) (D.T)(s, . ,  m) = O, Vm E ~, 
(iii) L~u~2o, g = 0 

where 

7"~X~(s, m) = ~x,~(z(s), ~,,(s  - s,,))-~f~(z(s), ~l,,(s - Sm)) 

X Taf3(~lm(S - Sm) ) 

The last expression indicates that 7" is a family of tensor fields along L 
obtained by parallely transporting the energy-momentum tensor from the 
trajectories ~,, (m ~ E) to the "center of motion" L. 

The first condition of L-rigidity represents the free expansion that every 
rigid motion must satisfy (as is the case of weakly rigid motion), in our case 
L-rigid motion. The second one assumes that the family of tensor fields along 
L, T, has constant components with respect to a comoving orthonormal frame. 
This supposes a modification of weak rigidity in the sense that here rotating 
M-transport is used instead of Fermi-Walker transport. 

As for the third condition of L-rigidity, we immediately have that, 
because N is a unit vector field, it is equivalent to the expression 

g(~ ,N,  N) = 0 (4) 

Moreover, we get the following result. 

Propos i t ion  3. A necessary and sufficient condition for the third condition 
of L-rigidity is 

~,,t.Ng = 0 

Proof.  First, as N is a unit vector field, we have 
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(~,o~sg)(N) = -g (N,  ~,oN) (5) 

On the other hand, given m ~ E, we denote by i.,,: E(s, , )  ~ ~ t  the 
canonical immersion. As X(Sm) is a fiber of ~.~,,, we immediately have 

i .... (TreE(s,,)) = ker ~b~,,. 
�9 m m 

and so 

(E,J.Ng),,,(JO = O, V X  ~ ~. ..... Tm(X(sm)) 
m 

From here and equation (5) we obtain the result. �9 

The latter proposition reaffirms that the vector field co '~ transforms E(s) 
into X(s  + ds).  Moreover, if to '~ is a Killing vector field, then the third 
condition of L-rigidity is an identity. 

We need to express the three conditions that define L-rigidity in an 
equivalent way such that the methods of the PPN approximation can be 
applied. 

We begin with the third condition of L-rigidity. On expressing equation 
(4) in a bitensorial form, we get 

nvtr .~ { nPtr.p,~[ K'~K.t~ K + H'~K.t~MKxtr.x - tixtx.x~ 

+ (K~.x~x~ K + H~.x~XM~tr .~)X.~]  

- (nKM~tr .  ~ + n~tr.x~t *~ + ti~tr.x~)X.13} = 0 (6) 

provided we take into account 

Vf~o~ ~, = K~'.~s ~ + H~'~.~M~xtr.x + H~'~MKxtr.x ~ + (Kr163163 ~ 

+ K " ~  ~ + H~.x2XM~t,cr.~ + H~MKxcr .X  + H~'~M~xcr.Xt,~")X.f ~ 

Moreover, from this last expression we deduce that the first condition of L- 
rigidity is equivM.ent to 

K~K.~2 ~ + H~'~.~,M~cr. x + (K"~.x2x2 ~ + K=~2 " 

+ H~'~.x2XMK~tr. ~ + Ha~M~xcr.h + H ' ~ M ~ x t r . x ~ ) X . , ,  = 0 (7) 

Finally, from a direct calculation, the second condition of the L-rigidity 
leads to 

2~(x,~.~)I3T"I3 + 2oJ'~x~,.v~)13T '~a 

+ ~ - ~ V ~ T  ~" + 2-~(X~,MO')p-~f'f~T '~f~ = 0 (8) 

To conclude this section and as an immediate application of this last 
expression, we study the relation between L-rigidity and weak rigidity. We 
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restrict consideration to Minkowski space. We consider the center-of-mass 
line Lo defined by Ehlers and Rudolph (1977), 

S ~ p ~  = 0 

and we take n ~ according to the relation 

pX = Mn ~ 

where pX and S x~' are the linear and the angular moments given by Dixon 
(1974). 

With this choice we can show that 

p~ = 0 = S~' 

which yields that, if Ox~ is the angular velocity of the body, the vector field 
that determines the pseudorigid motion has the following components: 

to '~ = G~(t ~ - OKxr x) (9) 

We consider L-rigid motion with constant angular velocity. The unique 
nontrivial condition of L-rigidity is, corresponding to (8), 

"~ R( k('~ p.) ~v  wal3 G~G~toVT~a,v + ,-,,,~,, vui3, = 0 (10) 

Now, by identifying the kinematical velocity r e with the dynamical velocity 
u'L we obtain from equation (9) that 

u" = ~(s _ O.xr a) + 0(02) (11) 

and therefore equation (10) becomes 

uVT~a,v -- O(•) (12) 

On the other hand, the weak rigidity conditions can be written as 

uVT"f~ v ~ 0(02) (13) 

which indicates that, if the angular velocity is constant and small, weak 
rigidity and L-rigidity are equivalent. 

4. PPN EQUATIONS OF L-RIGIDITY. CONSEQUENCES 

In this section, we develop the post-Newtonian approximation of (6)-(8) 
with the idea of obtaining new results that correspond to classical rigidity 
properties. We will use the notation and results presented by Misner et 
al. (1973). 
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In this approximation we choose L-rigid motion so that 

n i = 0 (14) 

in the PPN coordinate system. Moreover, we parametrize the curve L with 
the coordinate time, i.e., 

~4= 1 (15) 

Equation (14) shows that, as will be shown further on, the simultaneity 
hypersurfaces coincide, in first order, with the hypersurfaces t = const. 

In this approximation, the assumption of small velocities leads to 

g i _  O(O (16) 
a o ~ O(e/R) 

where ~ is a small parameter, e 2 ~ M/R, where M and R are typical values 
of masses and separations of  the bodies involved. 

On the other hand, as Dixon (1970) indicates, -(r.~(z, m) is a natural 
generalization of  the position vector of m relative to z, and it is reduced 
to this position vector in flat space-time. So, in this approximation, we 
consider that 

tr.X(Z, m) = -rX(z ,  m) + AX(z, m) (17) 

A• m) ~ O(rX(z, m)E 2) 

We also suppose the following expansion, with respect to the parameter 
~, of  the parallel propagator: 

-gia = ~ia + O(E'2) 

gi4, g4 a ~ O(E 3) (18)  

~44 = 1 + O(~ 2) 

Obviously, for all m E E, 

ri(zm, m) ~ O(R) (19) 

and therefore 

r4(zm, m) ~ O(RE 3) (20) 

which indicates that the hypersurface t = t,. coincides, in first order, with 
the simultaneity hypersurface E(t,.). 

The above result shows that the vector field to ~ that determines the 
pseudorigid motion has the following components: 

toa(rn) = ~a~i ( tm)  - -  8~U(tm)rJ(z,,, m) + O(e 3) (21) 

to4(m) = 1 + O(e 2) 
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Moreover, from (20) it is easy to prove that 

X.,, - O(e3) 

and from (3) 

(22) 

X.4 = 1 + O(e z) (23) 

From this we get the post-Newtonian expressions of the bitensors that consti- 
tute the L-rigidity equations, and using these expressions, we deduce that (8) 
is equivalent to the following: 

dt ~ 0 (24) 

- -  + 8i,~jr + 8jo~,cOjitae ~ 0 (25) 
dt 

Obviously, (24) is in agreement with the classical rigidity, because it supposes 
that the baryon mass density is constant in first order. Condition (25) indicates 
that the stress tensor has constant components in the comoving system. 

We obtain the post-Newtonian approximation of equation (7): 

U iz i']- U4 = - ( f ,  j4 '~ ~"~jkU,k '[- U,jkzk)F j 

q-2~ib~jdU, rd~ikrJrk q- O(eS/R) (26) 

whereas equation (6) is equivalent to 

U, ig i + U.4 = -(U.j4 + ~jkU.k + U.jk~)r j 

+ ~ib~jclUba~QikrJr k + O(~5/R) (27) 

As an immediate consequence of the two last equations, we deduce that 

U i~ ~ + U4 ~ O(~5/R) 
and (28) 

(U,j4 + ~jkU.k + U jk~)rJ ~ 0(r 

Since the last expression is satisfied for all r j, we have 

d U J d t  + O~j Uj  ~ O(eS/R 2) (29) 

Expressions (28) and (29) agree with classical rigidity, to the effect that 
the Newtonian potential is constant along the line L and the Newtonian 
gravitational field is constant along the line L in the comoving system. 
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5. DISCUSSION 

As pointed out in Section 3, L-rigidity is a specialization of pseudorigidity 
and thus is introduced choosing an arbitrary line L. For certain particular 
conditions, such as those in the relation between weak rigidity and L-rigidity, 
the center-of-mass line has been used in Minkowski space. 

It is easy to prove that pseudorigidity, and thus L-rigidity, leads to 
classical rigidity if we identify the kinematical velocity to~' with the dynamical 
velocity u '~ (timelike proper vector of the energy-momentum tensor) in the 
post-Newtonian approximation: 

v~ = B~ig i - B~i f l i j r  j + O(~ 3) 

Moreover, the concept of L-rigidity includes a slight modification of the 
weak rigidity conditions. This modification does not imply that L-rigidity 
always coincides with weak rigidity, except for the very special class like 
the ones stated above. 

We have just obtained that the baryon mass density is constant in first 
order, the stress tensor is constant in the comoving system, the Newtonian 
potential is constant along the line L, and the gravitational field is constant 
along the line L in the comoving system. These results would suggest that 
our concept of rigidity is more than just a pure specialization of pseudorigidity 
and a slight modification of weak rigidity. 

On the other hand, let us indicate that the analysis of the L-rigidity 
conditions in the Newtonian approximation (Barreda and Olivert, 1993) would 
not be enough for our study, since, at this level of approximation, we get 

• .  to ~ O ( E 3 / R )  

g(~,~N, N) ~ O(e3/R) 

and thus the first and the third conditions of L-rigidity are satisfied in this 
approximation order. 

One may remark that in this paper we have not considered the relationship 
between this new concept of rigidity and that of quasirigidity. The authors 
are presently concluding this study and in subsequent work they will show 
that L-rigidity leads obviously to quasirigidity in very significant cases. 
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